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ABSTRACT

Existing models still exhibit a deficiency in capturing more detailed contextual information when 
processing architectural images. This paper introduces a model for architectural image segmentation 
and retrieval based on an image segmentation network. Primarily, spatial attention is incorporated into 
the U-Net segmentation network to enhance the extraction of image features. Subsequently, a dual-
path attention mechanism is integrated into the U-Net backbone network, facilitating the seamless 
integration of information across different spaces and scales. Experimental results showcase the 
superior performance of the proposed model on the test set, with average dice coefficient, accuracy, 
and recall reaching 94.67%, 95.61%, and 97.88%, respectively, outperforming comparative models. 
The proposed model can enhance the U-Net network’s capability to identify targets within feature 
maps. The amalgamation of image segmentation networks and attention mechanisms in artificial 
intelligence technology enables precise segmentation and retrieval of architectural images.

Keywords
Architectural Environment Integration Design, Artificial Intelligence, Attention Mechanism, Image 
Segmentation, U-Net

Image-segmentation techniques are extensively employed in architectural design due to the rapid 
advancement of artificial-intelligence technology. Researchers commonly segment image regions 
through manual or machine-learning methods. The threshold-based segmentation method (Du et al., 
2023; Wang et al., 2023) delineates the image’s grayscale histogram by selecting various grayscale 
thresholds. Pixels within the same grayscale range are considered part of the same class, sharing 
inherent similarities. The edge-based segmentation method (Li et al., 2010; Khan et al., 2023; Maican 
et al., 2023) necessitates the identification of the edge starting point, followed by a search for and 
connection of surrounding edge points from the starting point based on a similarity criterion. The 
region-based segmentation method (Liu et al., 2020; Xu et al., 2022; Li et al., 2023) relies on the 
spatial information of the image, constructing the segmentation region based on the similarity features 
of pixels. The graph partitioning approach in the graph theory-based segmentation method (Pei et 
al., 2020; Mamatha et al., 2022) completes the segmentation process by determining the optimal 
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solution to the goal function. Thus, the application of image-segmentation techniques in architectural 
design facilitates a more intuitive understanding of architectural construction and design methods 
for relevant practitioners.

The evolution of cities is contingent upon the interplay between the architecture people inhabit 
and their environment. As population density escalates, the development and layout of cities become 
increasingly intricate. Modern cities resemble networks, encompassing elements such as population, 
transportation, architecture, nature, industry, land, and water. Consequently, in urban planning and 
architectural design, designers must not only contemplate architectural design but also address and 
enhance the natural environment upon which we rely. The integration of the concept of environmental 
protection with architectural design is imperative. Architectural images harbor comprehensive 
information about architecture and environments, underscoring the necessity of employing image 
segmentation technology to precisely delineate architectural styles and environmental elements. 
This ensures the provision of more-nuanced image information and design concepts for architectural 
designers (Yin et al., 2022; Wang et al., 2022; Lüddecke & Ecker, 2022).

This paper introduces a model for architectural image segmentation and retrieval based on an 
image-segmentation network, specifically tailored for multi-perspective scenarios. The primary 
contributions include:

(1) 	 Integration of spatial attention and dual-path contextual attention into the U-Net segmentation 
network to extract additional contextual architectural image features, thereby enhancing the 
network’s ability to identify targets within feature maps

(2) 	 Training the improved U-Net segmentation network on a self-constructed dataset of architectural 
images in this study, leading to the optimization of network parameters

The proposed approach proves effective in achieving accurate segmentation and retrieval of 
architectural images. This capability holds promise in assisting architectural designers in crafting 
superior urban architectural environment integration design solutions.

RELATED WORK

Prior to the integration of image-segmentation and retrieval technology into the realms of architectural 
design and urban development, architects seeking a comprehensive understanding of the overall 
design schemes and aesthetic styles of integrated architectural environments typically engaged in 
discussions with peers and consulted relevant literature. However, these conventional methods proved 
inadequate in meeting the sensory requirements of urban design concerning architectural style and 
green environments. With the introduction and application of image-segmentation and -retrieval 
technology, a novel solution has emerged for this challenging issue. For architects, the segmentation 
and retrieval of architectural images offer a superior means of acquiring relevant knowledge about 
integrated architectural environment design, thereby propelling the development of green cities. 
Consequently, the key focus shifts to the construction of an intelligent and efficient architectural 
image-segmentation and -retrieval model.

In recent years, the application of deep learning–based semantic image segmentation has become 
widespread across various domains. This approach is employed primarily to address issues such as 
fuzzy boundaries, low precision, and low resolution in images. When image-segmentation techniques 
are applied to architectural images, the model is expected not only to accurately delineate specific 
architectural features and refine architectural categories but also to assist designers in obtaining 
more-precise design solutions.

Deep learning–based semantic segmentation of images (Ulku and Akagündüz, 2022; Hemamalini 
et al., 2022) has witnessed widespread adoption across various domains, effectively addressing issues 
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such as fuzziness and low resolution in images. Erdi et al. (1997) introduced an end-to-end neural 
network for semantic image segmentation. Li et al. (2019) proposed a U-Net network structure 
based on fully convolutional networks (FCNs), better suited for fine image processing. Unlike the 
summation mechanism of FCN, U-Net utilizes multiple upsampling and downsampling operations to 
gradually acquire high-level semantic information. It also incorporates jump connections (stitching 
dimensions of the same channels together), thereby enhancing feature fusion and significantly 
improving segmentation performance. While U-Net has demonstrated success in image segmentation, 
its limitations in extracting detailed contextual information have led to the proposal of new structures 
with U-Net as a variant. For instance, Duan et al. (2018) designed a lightweight SegNet model, 
introducing a novel upsampling method for efficient image segmentation.

The UNet++ network, an extension of U-Net, represents a notable breakthrough in image-
segmentation technology. This network efficiently addresses the adaptive selection of sampling 
depth among different samples, accelerating the extraction of feature information at various levels. 
However, it comes with a drawback of an abrupt increase in the number of model parameters, leading 
to heightened computational costs and a significant demand for GPU resources (Zhou et al., 2018). 
As network models deepen, Tan et al. (2021) proposed an AcuNet network, utilizing depth-separable 
convolution to reduce model parameters. Trebing et al. (2021) introduced an At-UNet segmentation 
network, incorporating an attention mechanism based on U-Net and employing depth-wise convolution 
instead of traditional convolution. Cao and Zhang (2020) proposed an updated Res-UNet model 
for high-resolution image segmentation. He et al. (2020) presented a hybrid attention approach for 
effective architecture segmentation. Zhao et al. (2022) introduced an Inception v3–based image-
segmentation method to enhance the segmentation accuracy of small target images effectively. Zhao 
et al. (2017) proposed a pyramid-shaped scene-parsing network, integrating contextual data and fully 
exploiting global features for semantic segmentation of diverse scenes. He et al. (2017) introduced 
mask R-CNN for image segmentation, achieving high-quality semantic segmentation while performing 
target detection.

However, the aforementioned study on establishing intelligent and efficient architectural image-
segmentation and -retrieval models also exhibits some crucial shortcomings and research gaps. First, 
despite the incorporation of various advanced neural network structures and their variants, the model 
still lacks in-depth extraction of more-detailed contextual information when processing architectural 
images. There is a need for a more comprehensive consideration of effective global-information 
extraction. Second, some structures introducing additional parameters result in an increase in the 
computational cost of the model, potentially requiring substantial GPU resources, thereby limiting 
the model’s applicability in certain environments. Additionally, the segmentation accuracy for small 
target images is not adequately emphasized, warranting further in-depth research. Furthermore, while 
the review mentions the model’s requirements in terms of segmenting architectural features and 
refining architectural categories, it does not delve into how the model practically supports architects 
in obtaining more-precise design solutions. This represents a research gap that merits attention in 
terms of the practical support for architectural design.

METHODOLOGY

First, the improved U-Net segmentation network is trained on a self-constructed dataset of architectural 
images to optimize network parameters. Subsequently, semantic segmentation is applied to architectural 
images to acquire corresponding image features. On this foundation, an architectural image feature 
library is established. Finally, based on weighted Euclidean distance, a similarity measure is employed 
on architectural images to determine corresponding retrieval results. This process aims to provide 
architects with enhanced design insights for architectural environment integration.
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U-Net
The encoder segment of the U-Net network is referred to as the compression path. In this compressed 
path, the feature map undergoes a total of four downsamplings, employing a 2×2 max-pooling method. 
Before each downsampling, the feature map goes through two convolution operations, reducing its 
edge length by 4 in each step. After four downsamplings and two convolution operations, the size 
of the feature map is diminished to 32×32. The decoder segment of the network is denoted as the 
extended path, taking a 32×32 feature map as input. The extended path involves four upsamplings, 
each followed by two convolution operations. To reduce feature dimensionality, the upsampled feature 
maps are concatenated with the feature maps from the compressed path. The resulting feature map 
then undergoes two convolution operations in the final module, generating the ultimate prediction 
map. The structure of the U-Net is illustrated in Fig. 1.

ResNet Backbone Network
The feature-extraction network employed in the enhanced U-Net image-segmentation 
framework in this paper is ResNet34, incorporating a skip connection mechanism between 
every two convolutional layers to provide the neural network with backward capability. The 
network structure is depicted in Fig. 2. A softmax classifier has been added to the final layer, 

Figure 1. U-Net Structure

Figure 2. ResNet34 Network Structure
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representing a fully connected layer. While the dropout layer is not explicitly displayed, it is 
integrated into the convolutional layer.

During operation, the pooling layer samples the input feature maps, effectively reducing the 
number of connected units in adjacent convolutional layers to facilitate subsequent computational 
analysis. Notably, in consideration of the unique characteristics of architectural images, the maximum 
pooling method is selected when designing the network. This choice aims to mitigate the impact 
caused by parameter errors in the convolutional layer and ensure the adequate retention of texture 
information. To help architecture designers perceive intricate details within architectural images, the 
output of the fully connected layers is thoughtfully preserved.

Spatial Attention
During the segmentation of architectural images, the network anticipates effective recognition of the 
target even when it undergoes rotation and distortion. Spatial transformer networks (Lin & Lucey, 2017) 
represent an early and impactful contribution to spatial attention. Prior to input of the feature map into 
the convolutional neural network, the option exists to rotate and scale the target. This augmentation 
enhances the convolutional neural network’s proficiency in recognizing the target within the feature 
map. The spatial attention structure is delineated in Fig. 3.

Following the input of the feature map into spatial attention, the target within the image undergoes 
a sequence of operations, cropping, rotation, scaling, and translation, facilitated by the localization 
network. To effectuate these transformations, the coordinate values of the target are treated as a 
two-row, one-column matrix, multiplied by a two-row, two-column matrix, and subsequently added 
to a two-row, one-column matrix. Once the localization network completes the aforementioned 
transformations on the target, a grid generator converts the target image’s coordinates back to the 
original image’s coordinates. Subsequently, the gradient descent problem is addressed by a sampler. 
The collective interplay of the localization network, grid generator, and sampler constitutes a 
comprehensive spatial-attention mechanism.

Dual-Path Attention
Achieving accurate image segmentation requires consideration of the size and location of the target 
itself. However, the convolution operation in previous segmentation networks is limited to a local field 
of perception, hindering effective collection of contextual information and resulting in suboptimal 
network segmentation. To address this limitation, we propose the incorporation of dual-path attention 
to aggregate contextual information, replacing the bridge module in U-Net. The inclusion of dual-
path attention in the model framework enhances the aggregation of context information by allowing 
the model to simultaneously focus on local content details and broader contextual information. 

Figure 3. Spatial Attention
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The dual-path attention comprises two parallel residual channel attention modules, emphasizing 
the contextual information of feature mapping, as illustrated in Fig. 4. The structure of the residual 
channel attention is detailed in Fig. 5.

Given an input feature mapping, dual-path attention scrutinizes the location of the specified target 
within the feature mapping. It selectively disregards other less relevant target features while learning 
essential information about the specified target. The application of dual-path attention enhances the 
overall model architecture, providing a more advantageous approach to improving model performance 
compared to merely increasing the depth of the model.

The residual channel attention module zeroes in on valuable information within the feature 
matrix, extracting more-discriminative features. In conventional convolution operations, constrained 
by the perceptual field’s limited range, the convolution kernel can focus on only one local region of 
the feature mapping at a time. Consequently, it fails to capture contextual information beyond that 
localized region. To more effectively explore the semantics of the entire space of feature mappings, 
the residual channel attention module is employed.

This paper first uses a global averaging pooling operation to fuse the entire spatial information 
of the input feature mapping M H W C∈ × ×

  into a single channel identifier Ic C∈ × ×


1 1 . From an 
implementation point of view, a channel identifier Ic C∈ × ×



1 1  is obtained by reducing a feature map 
from a two-dimensional space to a one-dimensional space.

To extract meaningful information from channel identifiers, this paper captures the nonlinear 
relationship between each channel within the identifier using two convolution processes. The first 
convolution layer is designed as a dimensionality-reduction layer, aiming to decrease the channel 
dimension of the channel identifier and regulate the complexity of the subsequent two convolution 
operations. Subsequently, the input feature mapping undergoes dimensional expansion through the 
second convolution layer. Following two convolution operations utilizing the sigmoid function, a 

Figure 4. Dual-Path Attention

Figure 5. Residual Channel Attention
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straightforward gating control is implemented on the channel. This process results in the creation of 
a logicalized channel information structure ¢U c . The input feature mapping and the logicalized spatial 
structure Uc H W C∈ × ×

  are then used in a weighted sum operation to create the channel attention 
feature matrix:

′ = ( )( )U W L W Ic s 2 1 	 (1)

U U Mc c= ′ × 	 (2)

L .( )  denotes the leaky ReLU function, W 1  and W 2  denote the weights of the first and second 
convolutions, respectively, and s .( )  denotes the sigmoid function.

Ultimately, this paper integrates the information from the acquired channel attention feature 
mapping with the input feature mapping through a residual structure. This process aims to obtain the 
final channel attention feature mapping, mitigating the loss of information from the input feature 
mapping � �Uc H W C∈ × × .

U U Mc c= + 	 (3)

Weighted Euclidean Distance
Upon the completion of architectural-image segmentation, this paper conducts similarity measures 
on the feature vectors between two architectural images utilizing weighted Euclidean distance. 
Subsequently, it discerns the specific features of architectural images along with their corresponding 
retrieval results. The traditional expression for Euclidean distance is as follows:

dist X Y x yi i

i

n

, ( )( ) = −
=
∑ 2

0

	 (4)

The traditional Euclidean distance is observed to overlook the impact of differences between 
corresponding individual elements when representing the cumulative difference between two spatial 
vectors. Utilizing the Euclidean distance directly for similarity measures between feature vectors 
results in significant errors in metric accuracy, as it neglects the influence of element similarity 
within the feature vector. Since each element signifies a specific attribute of the target with a distinct 
meaning, it becomes essential to consider both the cumulative inaccuracy of the feature vector and 
the influence of its elements when measuring feature similarity.

To address this, the paper proposes a weighted Euclidean distance, offering enhanced 
distinguishability and greater alignment with human sensory perception compared to the traditional 
Euclidean distance-calculation method. The expression for the weighted Euclidean distance is as 
follows:

dist X Y
w

W
x y

i
i i

i

n

, ( )( ) = −
=
∑ 2

0

	 (5)
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W  is the normalization parameter, s  is the adjustment parameter, s = 1  in the experiment, 
and wi  represents the weight, which is calculated as follows:

w ei

x yi i

=
−

s 	 (6)

EXPERIMENTS AND RESULTS

The experimental environment for this paper is Windows 10, with an Intel i7-10875H processor, 
16GB of memory, and an Nvidia GeForce RTX 2070 graphics card. TensorFlow 2.3 and 
CUDA 10.2 are utilized. The evaluation metrics commonly employed in image segmentation 
and retrieval—dice coefficient, accuracy, retrieval rate, and recall—are adopted as evaluation 
criteria. The proposed model’s segmentation and retrieval performance is assessed by crawling 
2,000 architectural images of urban areas from Baidu and Weibo. The images encompass various 
perspectives of the main body, each containing distinct green elements. An illustrative sample 
image is presented in Fig. 6. In addition, the ICCV 2017 detecting symmetry in the wild dataset 
is used for model performance comparison.

Data preprocessing plays a crucial role in computer vision and deep-learning research, aiming 
to enhance model performance and ensure the quality of input data. Our preprocessing steps include:

•	 Image cleaning and denoising to eliminate potential noise or irrelevant information
•	 Image scaling and cropping to standardize image dimensions and reduce unnecessary background
•	 Brightness and contrast adjustment to normalize image attributes
•	 Color standardization to ensure consistent color distribution
•	 Data augmentation through techniques such as rotation, flipping, and scaling to augment the dataset

Figure 6. Sample Dataset Diagram
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Model-Segmentation Performance Analysis
The model’s segmentation capability, as presented in this research, was evaluated on the dataset 
created for this paper. The dataset comprises 2,000 architectural images evenly distributed across 
five groups. Throughout the training process, one group was randomly selected as the test set, and 
this experiment was repeated five times. The results of these five experiments are detailed in Table 1.

The results presented in Table 1 highlight the impressive performance of the proposed model. 
Specifically, the average dice coefficient, accuracy, and recall metrics were observed to be 94.67%, 
95.61%, and 97.88%, respectively. These metrics serve as robust indicators of the model’s efficacy 
in image-segmentation tasks, particularly in the context of architectural images. The high values 
achieved across these key evaluation measures underscore the model’s superior capability in 
accurately delineating and segmenting elements within architectural imagery. Such precision is 
indicative of the model’s advanced ability to discern intricate details and boundaries, establishing 
it as a promising solution for tasks demanding precise image segmentation in the domain of 
architectural analysis and recognition.

Model-Retrieval Performance Analysis
To assess the effectiveness of the weighted Euclidean distance for retrieving architectural images in 
this paper’s model, a test set of 100 images was randomly selected from the dataset. The retrieval 
results were utilized to calculate the area under the receiver operating characteristic curve (AUC). 
The proposed weighted Euclidean distance was compared to the Euclidean distance, semantic 
similarity metric, and visual similarity metric to evaluate its retrieval performance. Table 2 provides 
a comprehensive comparison of classification performance, showcasing the AUC with corresponding 
mean and standard deviation values for various metrics. Notably, the proposed model in this paper, 
labeled as “ours,” outperforms other methods.

The AUC for the weighted Euclidean distance in the presented model is notably higher at 0.964 
with a standard deviation of 0.008. In contrast, the AUC values for alternative methods such as 
Euclidean distance, semantic similarity metric, and visual similarity metric are 0.923, 0.931, and 

Table 1. Model-Segmentation Performance

Evaluation 
Metrics

Cross-Validation Average 
Value1 2 3 4 5

Dice (%) 95.79 94.52 94.91 93.85 94.12 94.67

Accuracy (%) 96.66 95.48 95.85 94.89 94.97 95.61

Recall (%) 98.42 97.76 98.43 97.34 97.51 97.88

Table 2. Classification Performance Comparison

Name AUC (Mean± SD)

Euclidean distance 0.923± 0.008

Semantic similarity metric 0.931± 0.011

Visual similarity metric 0.930± 0.010

Ours 0.964± 0.008
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0.930, respectively. This substantiates that the model introduced in this paper excels in architectural-
image retrieval, surpassing the individual performance of semantic and visual-similarity measures. 
The higher AUC underscores the model’s superior ability to retrieve relevant architectural images 
effectively.

Performance Comparison of Different Models
To evaluate the segmentation and retrieval capabilities of the model proposed in this paper, the 
following networks were selected for comparison: U-Net, ResU-Net (Sabir et al., 2022), AU-Net 
(Liu et al., 2022), UNet++ (Zhou et al., 2019), and CE-Net (Chen et al., 2021). Cross-comparison 
experiments were conducted between the aforementioned networks and the model in this paper. The 
mean values were taken as the comparison results, and these results are presented in Table 3.

This paper demonstrates optimal performance across all evaluation metrics. Compared to the 
original U-Net, the model in this paper exhibits a 9.68% improvement in dice coefficient, a 12.36% 
enhancement in accuracy, and a 14.09% increase in recall. The introduced spatial attention and dual-
path attention in this paper contribute to the U-Net segmentation network’s ability to extract more 
precise characteristics from architectural images.

To visually highlight the segmentation performance superiority of the model in this paper, a 
comparative analysis is conducted through 150 training iterations between the model in this paper and 
the original U-Net. Accuracy curves are plotted for comparison, with the blue curve representing the 
model in this paper and the yellow curve representing the original U-Net. The accuracy comparison 
results are depicted in Fig. 7.

Table 3. Comparison of Different Models

Model DICE Accuracy Recall

U-Net 86.31 85.09 85.79

ResU-Net 92.39 93.41 93.58

UNet++ 93.16 93.78 94.02

AU-Net 93.17 94.59 94.74

CE-Net 93.49 94.71 94.89

Ours 94.67 95.61 97.88

Figure 7. Accuracy Curve
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The convergence analysis reveals that the model in this paper exhibits a noteworthy trend. 
Accuracy stabilizes and approaches a consistent state starting from the 24th iteration, reaching a stable 
condition by the 60th iteration. This observation suggests that the model not only achieves accurate 
architectural-image segmentation and retrieval but also demonstrates robustness and generalization 
capabilities. The stability in accuracy after a relatively small number of iterations implies that the 
model has effectively learned the underlying patterns in the data, showcasing its ability to generalize 
well to new instances. This stability in performance signifies the reliability of the proposed model, 
instilling confidence in its consistent and accurate performance in architectural image–related tasks.

Model Segmentation and Retrieval Example Analysis
To underscore the outstanding capability of this model in segmenting and retrieving architectural 
images and surrounding environmental elements, the architectural-image data from the ICCV 2017 
detecting symmetry in the wild dataset was employed to validate the feasibility of the model. Fig. 8 
presents a comparison of the segmentation and retrieval results between this model and the original 
U-Net on this dataset. The retrieved architecture is labeled with green dots in U-Net, while this 
paper’s model utilizes red dots for labeling. Additionally, the environment elements are designated 
with yellow borders.

The comparative analysis between the model proposed in this paper and the original U-Net 
underscores the enhanced capabilities of the former. Specifically, the presented model excels in 
identifying both environmental and architectural elements within images. In contrast, the original 
U-Net exhibits limitations in retrieving environmental elements surrounding architecture and displays 
partial omissions in architectural identification. This improvement in retrieval and segmentation, 
achieved by the model in this paper, holds significant implications for urban construction and design. 
The heightened accuracy in distinguishing architectural and environmental elements contributes 
to a more comprehensive understanding of the image content. Such advancements are crucial for 
informing decisions in architectural environment integration, enhancing the model’s utility in urban 
planning and construction scenarios.

CONCLUSION

This paper introduces a U-Net-based model for architectural-image segmentation and retrieval. The 
deep fusion of spatial attention and dual-path contextual attention with the U-Net segmentation 
network enables the collection of contextual information from different scale feature maps, aiding the 
model in extracting higher-quality architectural image features. The model achieves an average dice 

Figure 8. Comparison of Segmentation and Retrieval Results
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coefficient, accuracy, and recall of 94.67%, 95.61%, and 97.88%, respectively, on a self-constructed 
dataset of architectural images, demonstrating accurate segmentation and retrieval capabilities.

The advantage of this deep fusion lies in its ability to suppress noise and redundant information, 
enhancing the network’s robustness and generalization by reducing sensitivity to noncritical 
information. The introduction of multilevel contextual information empowers the network with 
enhanced semantic structure resolution, contributing to improved performance in handling fuzzy object 
boundaries and complex scenes. Moreover, this fusion strategy makes the network more adaptable 
to objects of different scales, simultaneously increasing segmentation efficiency while maintaining 
high accuracy. From the application level, the proposed method can help architectural designers to 
create more-excellent architectural environment integration design schemes and further optimize 
urban design concepts and paths.

However, for particularly complex scenarios such as dense occlusion and highly variable lighting 
conditions, the deep fusion network may still face challenges. This could result in insufficient 
robustness of the model in extreme situations, requiring further improvements to adapt to more-
complex scenes. Additionally, the fused attention mechanisms may lead to increased computational 
and storage overhead when dealing with large-scale data, limiting their application in real-time 
scenarios and on edge devices. Addressing this issue may necessitate more-efficient algorithm design 
and model optimization.
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